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Abstract:  How well will an application run in an environment in which memory and processor

bits may be changed because of exposure to radiation?  This paper looks at the behavior of a

single application when register, heap, and code space are injected with faults.  An analysis is

done of the program's response to injected faults and generalizations are drawn with regards to

some of the characteristics of a program that make it more or less susceptible to producing

incorrect results when faults are injected.  A vulnerability measure is calculated that can

facilitate evaluation of fault tolerant techniques.
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1.  Introduction

The Remote Exploration and Experimentation (REE) project at JPL is developing

an embedded cluster that uses COTS (Commercial-Off-The-Shelf) components, for use

on-board spacecraft [1], [2].  There is an advantage in using COTS hardware instead of

radiation-hardened components, because the process of radiation-hardening a device

takes time, and as a result, radiation-hardened components are a generation or more

behind what is available in the commercial market.

Of course the disadvantage of using COTS components is that they are

susceptible to radiation effects.  One of the goals of the REE project is to determine how

radiation exposure will affect the operation of scientific applications, and whether

radiation effects can be mitigated by means of strategies such as the use of Algorithm-

Based Fault Tolerance (ABFT) techniques [3].  The first step in this process is to
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understand how an application will fare on its own in a radiation environment.

Understanding this will provide valuable information on what steps can be taken to

improve performance in this environment.

The radiation environment the REE project is considering initially is the one to

which satellites are exposed while in low earth orbit (LEO) or geosynchronous orbit

(GEO).  The project developed a radiation fault model for the hardware we expect to use,

in these environments.  According to the model, we would expect to see 5-10 faults per

hour per node, assuming nominal solar activity [4].  The vast majority of these faults

(over 99.9%) we expect to be transient errors, in the form of single event upsets (SEU's).

Because the REE system is being designed primarily for support of science

applications, as opposed to mission-critical or spacecraft control functions, occasional

resets and processing delays as a result of SEU's are acceptable.  Infrequent program

crashes or hangs are tolerable because they are easily detected, and the program can be

restarted.  Also allowable are very slight differences in the output, equivalent to the

differences that might result from porting the program to an alternate platform, or

differences that might result from small amounts of noise in the input.  For this test,

differences in 50 or fewer of the 256K segmented pixels output by the program were

considered acceptable.  In contrast, an SEU that produced an error resulting in output

differing in more than 50 positions is considered an unacceptable error.  These

unacceptable errors are the kind from which we want to protect the application, through

the use of ABFT libraries or other means.

2. The Application

The application we are presently studying is one produced by the Mars Rover

Science Team.  The application is called segment_rocks, and does image segmentation by

first performing texture analysis on a landscape image, and then clustering those outputs.

A block diagram of the program's data flow is shown in Figure 1.
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Figure 1.  Block diagram of application

The program first reads the image file from the disk.  It then calls the FFTW

library [5] to transform the data.  The transformed data is then run through a Gabor filter

which highlights texture and orientation features.  A reverse transform is then performed

on the filtered data.  The filtering and reverse transformation steps are done three times in

sequence for different filters.  The kmeans routine then clusters the pixels in the image

based on the values returned by the three reverse transformations.  The resultant output is

a 512 x 512 "labels file" which maps each pixel of the input to an integer.  This integer

has a range determined by a program parameter used to request the number of clusters.

For this test, the output integers ranged in value from one to three.

Our testbed is comprised of PowerPC 750 processors, running at 366 MHz.  Each

processor has 32 KB of instruction cache, 32 KB of data cache, and 1 MB of L2 cache, as

well as 64 MB of main memory.  Although the program can be run in parallel on more

than one processor, for the purposes of this analysis only the single node configuration



4

was used.  To aid in the analysis of program behavior, no compiler optimization flags

were set.

As previously mentioned, one of the program parameters (the k parameter)

governs the number of clusters into which the program will segment the image.  The

program was run with this parameter set to three.  The program I/O was not taken into

consideration either in the timing or the fault injection, partly to simplify the analysis, and

partly because we are not yet sure how our project will handle I/O--it may be written

directly to solid state memory.  Fault injection was done only into the application space--

no faults were injected into the O/S.

As a first step in the analysis, the different parts of the program were timed.

Program initialization took 0.1 seconds and the forward transform took 0.5 seconds.  The

forward transform is done on a 512 x 512-pixel array, with each pixel containing double

precision data.  Each of the three Gabor filtering steps lasted 0.35 seconds, and each of

the three reverse transforms ran in 0.5 seconds.  The reverse transformed data is then

normalized, scaled, and converted from double to single precision in about 0.3 seconds

for each of the three filtered outputs.  The kmeans routine took about 90% of the time,

lasting 30.5 seconds.  The total program run time was 34.5 seconds.  These times and the

analysis that follows depend on the exact parameter settings and program input that was

used.  Different input or settings could cause the program to follow other paths, which

would alter its response to an SEU.  To simplify the analysis here, the assumption is

made that the program only runs a single time once it is loaded into memory.

3. Fault Injection

When the REE test team began automated fault injection, their results indicated

that when the application was injected with a fault, it produced wrong answers less than

10% of the time.  This prompted an effort to determine exactly how the program was

affected when hit by an SEU, and why it seemed robust enough to still produce correct

answers.

For the purposes of this research, our own homegrown fault injector, by the name

of SWIFI, was used.  SWIFI works by using the ptrace facility to inject faults into user
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designated areas, including the code, registers, stack, heap, and data.  A total of 60 runs

were completed.  Twenty runs forced a fault into register space, 20 into the heap, and 20

into the code.  This was a Monte Carlo simulation, with the locations of the injected

faults within heap, code, and register space being randomly chosen by SWIFI.  In each

case, only one SEU was simulated for each time the program was run.

Heap Injections

Table 1 shows the results of injecting faults into the program's heap. In 13 out of

20 cases, the fault was injected into an array that was not active at the time; consequently,

these faults caused no change in program behavior.  Even when the fault was injected

into an area of the heap that was in use, the program proved to be surprisingly robust,

only once resulting in an unacceptable error in the output.  This brings up the question of

what attributes of the program made it this fault-tolerant, and whether other programs can

be modified to give them some of the same characteristics.

Injection

Location

No Error Acceptable

Error

Unacceptable

Error

Crash or

Hang

Previously used

memory

11 0 0 0

Not yet used

memory

2 0 0 0

In-use memory 4 2 1 0

Table 1.  Outcomes of SEU's in Heap

First we look at the way memory is allocated and used by the segment_rocks

application.  Of the entire heap space, 99.8% is allocated into 7 large arrays, each in size

between 1 and 4 MB.  Looking at when these arrays are in use will give us the

information we need.  Figure 2 is a chart based on this information.  It is drawn in the

time domain, and shows at what times during program execution the seven large arrays
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contain data that is to be used.  If the array has not yet been filled with data, or has data in

it that is no longer needed, it does not count against the amount of heap space in use at

that time.

Heap Usage Profile
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Figure 2.  Heap Usage Profile

In the profile, the kmeans routine starts at about the 4-second mark.  From that

point on, the program uses only three arrays, which contain a total of 5 MB.  By

calculating the area of the chart, one can determine that on the average only 5.7 MB is in

active use over the course of the program run, even though a total of 17 MB is allocated.

Consequently, a single fault injection into the heap has only a 34% chance of affecting

memory that is in use at the time.

Of course injecting just a single fault during the time the program is running is not

representative of what will actually happen in space. Assuming an environment where the

level of radiation is fairly constant, and a particular hardware configuration, the

frequency with which SEU's affect the program RAM is proportional to the amount of

RAM used and the length of time it is in use [6].  Therefore the important measure of a
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program's susceptibility to SEU's in this environment can be expressed in units of MB x

seconds.  The heap space of this program can be characterized as having a MB-seconds

value of 197.

The measure of a program's MB-seconds for its heap is useful in various ways.  It

permits the comparison of runs of the same program with different inputs, as well as

comparison of two different programs.  For example, program A might overall allocate

more memory than program B, but that information alone is not enough to determine

which program is more susceptible to SEU's in the heap space.  One must also take into

account the amount of time during which this memory is actually in use, and that is

precisely what the MB-seconds figure does.

The next part of this analysis can be simplified by defining the term vulnerability.

An area or array in the heap space can be said to be vulnerable at a particular point in

time if it contains data that will be used later in the program execution.  Seven of the runs

resulted in fault injections that were made in arrays that were vulnerable at the time of

injection.  Of these seven, four resulted in no errors, two had acceptable errors, and only

one had an unacceptable error.

The relative immunity of the program to faults injected into vulnerable data can

be explained by looking at how the input data is used in the program.  Essentially,

segment_rocks extracts information from the input data.  The amount of input data is

physically represented by a 512 x 512 pixel file, with each pixel containing 8 bytes of

information, for a total of 16,777,216 bits of input information.  By the time the kmeans

routine begins, those bits have resulted in 25,165,824 bits of information out of which

kmeans extracts 524,288 bits of output information.  For the purposes of this analysis,

we'll call the ratio of input bits to output bits the data condensation factor. In the

kmeans stage of this program (where the bulk of the time is spent, and the bulk of the

injections occur) the data condensation factor is 48.  Though there is no direct or simple

relationship between the data condensation factor and the chances of an SEU affecting

the output, a value of 48 here indicates that it is not too surprising for errors in the input

data to go unnoticed.  In fact, the only injection that produced an unacceptable error

ended up not in the data, but in a large (1 MB) array of pointers that was used to access

the data array.  This is probably a good argument to try to avoid large pointer arrays,
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either by restructuring the data array, or by modifying the access algorithm for the data

array so that a pointer array is unnecessary.  Such changes must be done in light of the

fact that the longer a program runs, the higher the chance it may be hit with an SEU.

Register Injections

One might think that faults injected into registers would have a more dramatic

effect on program behavior, but this was not so.  In all of the 20 runs with register fault

injection, the program produced correct results.  Others have also observed similar results

[7], [8].  An examination of the disassembled code produced by the debugger showed that

in each of the 20 cases, the register with the injected fault was not in use at the time.  This

finding in turn led several questions.  Was it pure coincidence that SWIFI happened to

pick an unused register each time it injected a fault, or did it indicate a low level of

register usage by the application?  If the program did not use many registers, why was

that?

Other research has offered explanations for why faults may not always affect

application behavior [8], [9]. In Koga et al [7], a description is given of the duty cycle of

each register--the percentage of time during which the register contents are vulnerable to

an SEU.  The previous discussion of heap vulnerability is an extension of the idea of

register vulnerability.  As was the case with heap arrays, a register is not vulnerable if it

has not yet been loaded with data, nor is it vulnerable if the data in it no longer has any

use.  This concept could be more clearly illustrated if we could see a profile of register

usage, similar to the heap usage profile shown previously.  But it is fairly difficult to

produce the information necessary to create the profile without some kind of processor

simulator, as described in [10], [11].  What can be done without too much effort is to

build a tool that looks at register usage not in the time domain, but in the code address

domain.  A Perl tool by the name of Regprof was built for this purpose.  Regprof looks at

assembly code to determine which instructions use which registers.  It then produces a

file that contains a count of how many registers are in use at each program address.  The

plot of that output for the kmeans routine is shown in Figure 3.  This plot does indeed

show that register usage is very low.  But because the plot does not show register usage in

the time domain, it could be misleading, if for example kmeans spends most of its time in
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a loop around the point where 8 registers are in use.  However, additional analysis of the

kmeans routine showed that it spent the bulk of its time in the area of code shown

between the arrows on the plot, between instructions 316 and 533.  The code in this area

uses about 4-5 registers, the same number of registers on the average as the entire kmeans

routine.  So we can conclude that on the average 4-5 registers are vulnerable at any one

time. With the PowerPC 750 having a total of 64 general purpose and floating point

registers, the expected chance of hitting a register while it has useful data in it is the same

as the combined duty cycle of the registers, about 7%.

Register Usage Profile
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Figure 3.  Register Usage Profile for kmeans

It is in the area of register usage that the decision not to use the compiler

optimization flags has the largest effect.  When the -O flag is used to compile this

program, the register usage level climbs so that an average of 14-15 registers are

vulnerable over the code space.  Although complete analysis of program behavior when

compiled with the -O flag has not been finished, 20 runs of the program while injecting

faults into the registers resulted in four runs that produced some errors, but none of these

fell into the "unacceptable" category.  One of the four resulted in a segmentation

violation; one produced a hang, and the other two produced errors too small to show up

in the output.
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This brings up the idea of a tradeoff: if program performance is not seriously

compromised, it might make a program more robust against SEU's to compile it without

register usage optimization.  This would force the program to load a fresh copy of the

data into the register each time, rather than relying on old and possibly corrupted data

already there.  This strategy could be particularly desirable if memory is protected by

Error Detection and Correction (EDAC) methods.

An example from the segment_rocks program can illustrate this point.  When the

optimization flag is used, one of the registers is dedicated to hold a value that is useful in

converting integers to floating point values.  This conversion is done infrequently in the

program.  If the program instead loaded this conversion value from EDAC-protected

memory when it was needed, instead of leaving it in the register constantly, the program

run time would not be noticeable affected, but register reliability would increase because

the duty cycle of this register would be lowered.

Code Injections

When faults were injected into the code segment during 20 separate runs, not a

single error or change in program execution occurred.  In 18 of these runs, a fault was

injected into part of the code that at the time of fault injection was no longer needed.  In

one other run a fault was injected into a branch of code that was not taken.  On only one

of the 20 runs was a modified instruction actually executed.  In that case, the injected

fault changed an immediate value loaded into the register that was used as a flag.  The

change in value did not affect the flag test.

The primary explanation for why so many faults were injected into unused code

has to do with the program flow.  Most of the individual instructions in the program are

executed in the first few seconds.  The kmeans part of the program that uses the bulk of

the time, uses only a very small amount of code in proportion to the rest of the program.

This means that most of the time when a fault is injected, the program will be in the

kmeans routine at the end of the code, but the fault will be injected into part of the code

that was previously executed.

This description can be simplified by again extending the term "vulnerability".  In

this case, an instruction in the code space is said to be vulnerable at a given point in time
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if the processor will execute that instruction before the program finishes.  At the

beginning of the program the entire code space is vulnerable, and at the end none of it is.

Using this concept of code vulnerability, a plot can be drawn showing the amount of

vulnerable code as the program executes.  This is similar in concept to the heap usage

profile of Figure 4, except that the code usage profile will always be a non-increasing

function.

It is not easy to determine a complete code usage profile for the segment_rocks

program, but the worst case profile shown in Figure 4 is illustrative.  At the beginning of

execution the entire 305 KB of program space is vulnerable, and at the 34.5 second mark

when the program terminates, the vulnerability drops to 0.  The kmeans routine is

initiated at the 4 second mark, and at that point only 4K of code is vulnerable.  Given

those constraints and the fact that the vulnerability function is non-increasing through

time permits determination of the worst case profile as shown.  Note there is an

assumption here that the program execution is begun immediately after it is loaded into

memory.

With this worst case code usage profile calculated, it is possible to evaluate the

probability of a fault injected into code space actually affecting an instruction that will be

executed.  Dividing the area under the graph by the product of the size of the code space

and the total execution time gives a 13% probability (worst case) that an injected fault

will end up in vulnerable code.

It is useful to try to characterize the code usage profile with a single number that

will indicate how vulnerable a particular program run is to SEU's that occur in the code

space.  Such a number will permit comparison with other programs, or even other runs of

this program with different input.  (It must be pointed out that all of the usage profiles can

change with different program parameters or input data.)  Similar to the discussion in the

section on heap fault injections, the chances of an SEU causing a fault in vulnerable code

varies directly in proportion to the amount of vulnerable memory and the period of time

during which it is vulnerable.  In this case the worst case number is simply the area under

the graph, which comes to 1.342 MB-seconds.
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Our testbed system, like most computer systems, uses the same memory for heap

space and code space.  This fact allows the MB-seconds figures for code and heap space

to be used in similar ways. For example, we can compare the code vulnerability with the

vulnerability of the heap to SEU's, previously calculated to be 197 MB-seconds.  From

this it is evident that an SEU is far more likely to affect a vulnerable area in the heap than

in the code.

Figure 4. Worst Case Code Usage Profile
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one kind of vulnerability for the other. For the sake of illustration, suppose an ABFT
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running time in such a way that the code vulnerability was increased by 20% to 1.6 MB-

seconds, the overall affect on reliability would be positive.

Register vulnerability has not been discussed in these terms for two reasons.

First, register memory is inside the CPU and so is not directly comparable to the RAM

holding the heap and code.  Secondly, register memory is extremely small compared to

heap and code memory.  The probability of an SEU affecting RAM is orders of

magnitude higher than the chance that a register will be affected.

4. Conclusions

The segment_rocks program proved surprisingly robust in the face of faults

injected into its heap, registers, and code.  In each case, usage profiles illustrate why this

is so.  This program had particular characteristics that explain its behavior.

The bulk of the heap was in use and vulnerable for only brief periods of time.

Most of the time, the program used an array shortly after it was filled with data.

Organizing a program so that an array is filled with data as late as possible means that the

data has less chance of being corrupted.  Our application also had one particularly robust

array, called the class array.  When a fault injection changed a class array value in the

convergence loop, the only effect was to add another iteration to that loop.  A final factor

was that the data condensation factor in the kmeans part of the code was 48, high enough

to give the expectation that most of the time injected faults will not affect the output

significantly.  The one fault that did produce erroneous output occurred in the very large

pointer array that was used.  Programs that avoid use of large pointer arrays, (without

adversely affecting performance) will do better in these circumstances.

The low register vulnerability also protected this application from being sensitive

to register fault injections.  Turning off compiler flags to keep this figure low may be an

adequate strategy for some programs whose performance is not adversely affected.  For

programs that need a higher level of register usage, it may be possible to add compiler

flags that will keep data from being held unused in the registers for long periods of time.
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The lack of program sensitivity to fault injections in the code is due to the

structure of the program execution:  most of the time is spent at the very end of the

program, in a routine that occupies only a small portion of memory.

Calculating the MB-seconds figure for both the code and heap gives a good

indication of how vulnerable they are to SEU's.  This figure has a number of uses.  It can

be used to determine whether code or heap space is more vulnerable.  It is useful in

comparing vulnerability of different programs, or runs of the same program with

differing inputs.  It can also be useful in evaluating the effectiveness of a particular ABFT

strategy.  But this vulnerability measure is tied to a particular hardware configuration.  To

compare figures between different platforms would require a conversion factor.

5. Future Work

This work has been useful in the effort to build a foundation for our project to

understand how a program behaves when faults are injected into it.  The fault injection

efforts described here have been very simple, and limited to heap, registers, and code.

No attempts have been made to model SEU's in cache or other areas of the CPU, or in

EDAC-protected memory.

It is reasonable to expect that SEU's in cache will have a higher probability of

modifying vulnerable areas of memory.  In future work we will want to focus on how the

program behaves when vulnerable areas are hit.  Some explanation of this is detailed

here, but more research needs to be done.  Such research needs to cover strategies the

program can employ to minimize SEU effects.  We also want to examine how the

vulnerability of the program changes as a function of change in its input data and runtime

parameters.  In addition we plan to look at how the program responds to faults injected

into the stack and variable space.  Finally, we will want to compare this program's

response to fault injections with the response of other programs, to see if the surprising

robustness of this program is common in other applications as well.

The MB-seconds figures for code and heap space are not easy to obtain.  If it

proves to be a useful measure we may want to develop tools that can be used to

determine those values.
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